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Abstract—
We propose a new technique for reducing the effect of noise on con-

trast fusion of multimodal imagery, yielding higher quality results than
can be obtained with previous methods. We rely on local non-parametric
estimation of band gradient entropies as a relative measure of geometric
structure. This work builds upon previous work by the author, and is
exemplified with remote sensing applications. Quantitative measures of
performance are given on ground-truth data, which indicate the advan-
tages of the new technique over existing approaches.

Keywords— Multispectral image processing, image fusion, remote
sensing, adaptive noise estimation, entropy estimation.

I. I NTRODUCTION

Increasing availability of co-registered multimodal imagery
from diverse sources such as magnetic resonance scanners,
aerial and earth orbiting sensors has spurred development of
numerous techniques for image fusion and visualization [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. These
methods can be roughly categorized in two classes, those
which work on the zero order properties of the images, and
those that use higher order information such as first or sec-
ond derivatives. We will refer to the later as contrast fusion
methods, since they attempt to reproduce a combination of lo-
cal contrast from each modality in the fused image product.
These methods appear to hold the greatest promise, despite
their computational burden, since they are well-adapted to the
physiological basis of contrast perception in the low-level hu-
man visual system [13], [14].

Contrast-based fusion techniques typically rely on the abso-
lute magnitude of derivatives as a means of determining which
bands of a multimodal image dominate the result at a given
point. A common rule is to choose the maximum contrast
among the bands and prescribe that as the contrast for the
fused image, with the rationale that large contrast correlates
with visually relevant image features. While this assumption
may hold for noise-free images, it becomes false when one or
several bands are corrupted by noise. In that situation, large
contrast may correspond to variation due to noise, and not to
underlying image features. Thus any fusion rule that assumes
all contrast to be due to valid signal variation will inevitably
produce unsatisfactory results in the presence of noise. The
present article proposes a new technique for minimizing the
adverse effects of noise on contrast fusion algorithms, thereby
rendering them more widely applicable. Most or all previous
contrast fusion algorithms could be adapted to take advantage
of this new technique. However, the algorithms previously de-
veloped by the author and his co-workers are especially well-
suited to incorporate the ideas introduced in this paper, and
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Fig. 1. Planar projections of the sensor noise equal probability ellipses, com-
puted for a Cohu 2200 color camera, in RGB coordinates.

therefore these algorithms are used as a model.

The outline of this article is as follows. In section II we
briefly review the contrast fusion algorithm proposed in [5],
[13]. Section III describes a technique for including informa-
tion about the sensor noise characteristics into the fusion pro-
cess. A locally adaptive merging rule that takes into account
absolute contrast magnitude and image noise is introduced in
section IV. Section V shows experimental results obtained on
various images. Finally section VI provides some conclusions
and outlines directions for future improvement.

II. CONTRAST FUSION MODEL

The method introduced below applies to several contrast
fusion models, such as those based on Laplacian pyramids
and wavelet transforms. For simplicity we introduce it in the
context of the model in [5] and the extensions in [13], which
we review in this section.

Let Ω ⊂ R
2 denote the image domain (usually a rect-

angle), and consider the trivial Riemannian vector bundle
P = (Ω,Ω × Rn, g), whereΩ is the base space,Ω × Rn
is the total space,g is a fiber-wise constant metric, and the
projection map is simplyπ(x, y, v) = (x, y), for (x, y) ∈ Ω,
v ∈ Rn. Now, define ann-band image as a section ofV ,

that is a map of the formΩ 3 (x, y) S7→ (x, y, s(x, y)), with
s : Ω → R

n. One may then writeS = Id ⊗ s, whereId
denotes the identity map onR2. The correspondingcontrast
form is defined asχ = S∗h − δ, whereδ is the Euclidean
metric onR2, andS∗ denotes the pullback map induced on
differential forms onRn by S. This is a bilinear form, which
is usually degenerate sinces may have vanishing differential.
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In coordinates, the contrast form is given by

χij (p) =
n∑

k,l=1

gkl(S(p))
∂sk(p)
∂xi

∂sl(p)
∂xj

− δij ,

for 1 ≤ i, j ≤ 2 andp ∈ Ω.
Thecontrast vector fieldV ∈ TΩ is defined so that its mag-

nitude and direction correspond with the largest eigenvalue of
χ and its eigenspace, and so that its orientation agrees with
that of the gradient of an auxiliary functionφ : Ω → R,
usually chosen to beφ =

∑n
i=1 s

k (but see [13] for other
choices). It is straightforward to verify that ifn = 1 and the
metric on the bundleP is globally Euclidean, thenV = ∇s,
hence the contrast vector field reduces to the standard notion
of first order contrast for grayscale images. In the casen > 1,
the contrast vector field encodes the combination of contrast
in all bands of the imageS. Therefore, a grayscale image,
given as an intensity mapf : Ω → R, whose gradient equals
V is a fused realization of the contrast in all bands ofS. Note
that the bundle metricg controls how contrast from each band
contributes to the contrast of the fused image, and furthermore
how contrast interacts among bands. Ifg is chosen to be Eu-
clidean on each fiber, then all bands contribute equally and do
not interact with each other non-linearly.

It is normally not possible to solve the equation∇f = V as
a means of constructing the fused image, so we resort to find-
ing the bestL2-approximate solution, which is characterized
(up to a constant) as a solution of the Neumann problem{

∆f = div V, onΩ,
∇f · ~n = 0, on∂Ω.

This is the desired fusion of the multiple bands in the original
image. For connections with wavelet-based fusion algorithms
andL1-approximate solutions see [13]. There are many ef-
ficient numerical methods for solving this equation, and we
will not discuss this topic in the current article (see [5] and the
references therein).

III. SENSOR DEPENDENT METRIC

Wolff and Socolinsky [15] proposed a method for handling
sensor noise in the context of edge detection in multispectral
images, which can also be used to account for sensor charac-
teristics within the fusion model of section II. Their approach
is based on a generalization of the MacAdams color discrimi-
nation metric of the human eye [16], to artificial camera sen-
sors, and models the inherent noise properties of the sensor
as a function of position in photometric space. Let us explain
the idea for a standard3-color camera. LetX = (x1, x2, x3)
be the color coordinates, in some fixed coordinate system, of
an incoming light stimulus. The camera responseC(X) for
a stimulus of colorX is a random variable, which they as-
sume to be Gaussianly distributed with meanX and covari-
anceΣ(X). The parameterΣ(X) measures the reliability
of the sensor response for stimuli with color coordinatesX.
Thus, it is natural to define a global metric on photometric
space, independent of spatial coordinates, by

g(X) = Σ−1(X).

Using this metric, contrast from each band is weighted ac-
cording to the noise characteristics of the sensor for each par-
ticular color, whereby noisier bands will contribute less to the

contrast form than bands with lower variance, in which we
have higher confidence. Figure 1 shows planar projections of
the equi-probability ellipses computed for a Cohu 2200 color
camera, represented in RGB coordinates. The main problem
with this approach is that in order to compute the metric we
must have access to the sensor and a rather substantial exper-
iment must be carried out. Even then, noise properties of the
sensor may be dependent on many changing factors, such as
environmental conditions, and these should be taken into ac-
count. Consequently, this construction may be of theoretical,
more so than computational, interest.

IV. L OCALLY ADAPTIVE METRIC

Not all image noise can be accounted for by the sensor
dependent metric from the previous section. Furthermore,
we often have no access to the sensor or cannot account for
all variables which figure into the noise metric. Under such
circumstances, it may be advantageous to choose the metric
adaptively, so as to maximize some information criterion. It
is not possible to separate signal from noise within a single
band, but having multiple bands we may hope to determine to
what degree contrast from one band is more ‘structured’ than
that from another, and then use this knowledge to decide on
an appropriate weighting.

It is tempting to consider the local mutual information be-
tween the gradients of different bands as a measure of con-
sistency. However, it is easy to see that mutual information
does not give us the kind of measure we are looking for. In
fact, recall that for independent random variables, the mutual
information is zero, but the distribution of gradients in differ-
ent bands may be uncorrelated for different reasons. Consider
for example a three-band image set consisting of a thermal-
infrared band, a range scanner band and an intensified near-
infrared band, acquired under extremely low light conditions.
In this situation, the intensified band will be very noisy, while
the other two bands will not be adversely affected by the il-
lumination. Now certain pixels will show strong edges in the
range band, due to depth discontinuities without temperature
change, and at other pixels the reverse will be true due to ther-
mal variations with no change in depth. For a neighborhood
of these pixels the mutual information between the respective
gradients may be low, but this is exactly the kind of situation
where we want to take into account the input from both bands
(or at least the one with strongest gradients). On the other
hand, at certain image pixels we will have strong gradients in
the intensified near-IR band due entirely to noise and weaker
but relevant edges in another band due to the true signal. Here
the mutual information will still be low, but both bands should
not contribute equally to the mixture. Furthermore, the band
with largest gradients should not be weighted more heavily as
it is noisier.

More generally, one cannot appeal to methods which ex-
ploit any sort of consistency or correlation across bands, since
in the most interesting image fusion scenarios that correla-
tion may be null. Indeed, one of the most profitable applica-
tions of image fusion are those in which different image bands
carry complementary and uncorrelated information. In these
cases several bands arenecessaryto get a complete informa-
tive picture. What we would like to do is combine the band
gradients so that the image obtained from the resulting con-
trast form takes optimal advantage of each band, emphasiz-
ing structured bands and de-emphasizing noisy ones. We now



propose a method which yields good results, but has no prov-
ably optimal properties. The optimal choice of metric, if such
an object can in fact be characterized, is an open problem.

Entropy-based techniques have been used in image process-
ing for tasks such as reconstruction from incomplete or noisy
data [17] and removal of motion artifacts in MRI [18]. Let
S = Id⊗ s, with s : Ω→ R

n be ann-band image. For each
bandsk, k = 1 . . . n, of s and each pixel(x, y) ∈ Ω, we wish
to consider the entropy of the random vector∇sk in a discrete
pixel neighborhood of(x, y).

For simplicity, consider a square pixel neighborhood of odd
side lengthw , centered at the pixel(x, y) ∈ Ω, and de-
note it byUw(x, y). Circular neighborhoods can also be used
with similar results and more computational effort. We esti-
mate the local probability density of∇sk overUw(x, y) non-
parametrically by

Q̂(v) =
1

w2 λ

∑
p∈Uw(x,y)

K(
|v −∇k(p)|

λ
), v ∈ R2,

which gives us an estimate for the local entropy

Hk
w(x, y) = −

∫
R2
Q̂ log Q̂,

where, as is customary, the logarithm above is taken to be
zero if Q̂ vanishes,K is a smoothing kernel (Gaussian in our
numerical implementation), andλ is a fixed bandwidth. It
follows from the definition of entropy that0 ≤ Hk

w(x, y) ≤
2 logw. From this computation, we obtainn maps

H̃k
w : Ω→ [0, w2] , k = 1 . . . n

defined by

H̃k
w(x, y) = e2 logw−Hkw(x,y).

Now, we define a spatially varying, locally adaptive, diagonal
metric on the trivial bundleΩ× Rn by

gij(x, y) =

{
nH̃iw(x,y)∑n
k=1 H̃

k
w(x,y)

if i = j,

0 otherwise
(1)

It behooves us now to provide some intuition for the na-
ture of the entropy-weighted metric (1). Consider the differ-
ence between an image neighborhood with geometric struc-
ture and one which is dominated by noise. In the structured
case, we expect the gradients to be concentrated in a few di-
rections, corresponding to edge orientations, and magnitudes,
corresponding to edge points versus non-edge points. For a
noisy neighborhood, we should expect the gradients to be dis-
tributed randomly, spread over a large range of magnitudes
and orientations. Therefore, the entropy of the gradient, as a
two-dimensional random variable, in an image neighborhood
can be expected to be lower for well-structured neighborhoods
than for ones dominated by noise. Note that we cannot use the
entropy of the raw grayvalues from each band as a weighting
criterion. In fact, the local entropy of the grayvalues is invari-
ant under spatial rearrangement of the pixels in the estimation
neighborhood, and thus does not convey information about
the geometric structure of the image over that neighborhood.
On the other hand, local gradient entropy is not invariant un-
der rearrangement, since the spatial location of pixels within

the neighborhood is used to compute the gradients, and thus
different pixel arrangements yield different gradient distribu-
tions.

Figure 2 shows an example of the distribution of gradients
for a noisy neighborhood versus a structured one, as pictured
in figure 2 (left). One can easily see that the distribution of
gradients for the unstructured neighborhood is rather uniform.
The geometric structure of the second example neighborhood
is apparent from the tight clustering of gradient vectors into
two groups, those corresponding to the vertical edge through
the middle of the neighborhood, and the rest. The metric in (1)
exploits this fact by favoring bands with lower local entropy.
If all bands have approximately the same gradient entropy in a
neighborhood of a given pixel, then no decision can be made
and the metric defaults to Euclidean at that point. The free
parameters in the metric are the size of the neighborhood over
which we estimate the local entropy, and the bandwidth of the
kernel estimator, both of which are scale parameters. We use
a fixed neighborhood width at every pixel of every band. It is
very possible that an adaptive width entropy estimation could
yield better results, but we have been unable to find an effec-
tive adaptation rule, since that rule should somehow depend
on the noise properties of the image bands in that neighbor-
hood and that is precisely what we are trying to estimate in
the first place.

The entropy metric in (1) provides a pointwise measure of
the confidence we have in the contrast from a given band at
that point being due to a structured signal and not random
noise. Since only the information in the image being pro-
cessed is used, we can only provide a relative measure, where
the confidence for one band is relative to the properties of
the other bands in the same neighborhood. This construc-
tion effectively implements Ockham’s razor, favoring the sim-
plest alternative. Note that this is independent of the contrast
present in each band at a given pixel. Individual band con-
trasts still compound to create the contrast vector field via the
contrast form as in section II, but their relative weighting is
given by our entropy metric.

Structured neighborhood
Noisy neighborhood

Fig. 2. Example gradient distributions for noisy (green) and structured (red)
neighborhoods at left.

V. EXPERIMENTAL RESULTS

Let us first look at an example from remote sensing. Figure
3 shows three bands of a multispectral aerial image acquired
over Hawaii with dynamic range[0, 255], and a fourth artifi-
cial band composed of Gaussian distributed noise with mean
127 and standard deviation of40. If we fuse these four bands
with the method in section II using a Euclidean metric, we
obtain the result in Figure 4(a). Note how all the noise in the
artificial band has been transferred to the fused image, as it



Fig. 3. Three bands of a multispectral aerial image acquired over Hawaii (courtesy of Space Imaging Corporation), plus an artificial band of Gaussian noise.

was equally weighted with respect to the other three bands.
Any other contrast fusion method that does not explicitly take
into account noise will produce comparable results. If instead
of a Euclidean metric, we use the one constructed in (1), then
we obtain the fused image in Figure 4(b), in which the noisy
band has been automatically de-emphasized. A side-by-side
comparison of subregions of the images in 4(a) and 4(b) is
provided in Figure 5. It is evident that much less noise has
been transferred to the fused image through the use of the
entropy-weighted metric. In fact, much detail is destroyed
by the effect of noise in the Euclidean fusion, especially in
areas with weak edges in the clean bands which nonetheless
represent true structure. This is especially visible in the re-
gion obscured by cloud shadows magnified at the bottom of
figure 5. The fusion with entropy-weighted metric success-
fully ignores contrast due to noise in the artificial band, when
more structured contrast is present in the other bands. From
a quantitative point of view, the mean signal-to-noise ratio for
the Euclidean fusion is40.47dB and for the entropy-weighted
fusion it is58.12dB, an improvement of over43%.

To gain some more intuition, we can look at the compo-
nents of the entropy-weighted metric for the example image
in figure 3. Figure 6 shows a plot of the diagonal metric coef-
ficients along a horizontal scan-line three-quarters of the way
down the image in figure 3, along with a comparison of the av-
erage coefficient of the first through third bands versus the co-
efficient of the fourth (noise) band. We see that whenever the
first three bands show more structure at the scale we use for
estimating the local entropy, the are favored heavily over the
noisy band. On the right side of the plot, which corresponds
to the heterogeneous region of tightly packed houses on the
lower right side of the image, the weight on the noise band
becomes comparable to the other three weights, as the local
entropy estimation cannot differentiate structure from noise at
the given scale.

A fair measure of performance can be obtained from a sim-
ple artificial experiment, similar to the example above. We
took a noise-free image (the standard Lena test image), cre-
ated a second band of random noise with the same mean and
standard deviation. Then, we computed the fusion of these
two bands using the algorithm in section II, both with a Eu-
clidean metric and the locally-adaptive metric in section IV,
as well as with the wavelet method in [8], using a Haar basis.
The best possible result is obviously to recover the original
noise-free image, with no corruption from the artificial noise
band. Measuring the departure from the optimal result with
the mean squared signal-to-noise ratio, we obtain the results
in table I, corresponding to the images in figure 7. One can
easily see that the local-entropy-based metric is superior to the
Euclidean one, and both outperform the (Euclidean) wavelet
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Fig. 6. Top: Diagonal components of the entropy-weighted metric along a
horizontal scan-line of the image in figure 3. Bottom: Average metric
coefficient on clean bands versus coefficient on noise band.

fusion in this example. The difference between the Euclidean
fusion from section II and the wavelet result should not nec-
essarily be interpreted as indication that one method is supe-
rior to the other for general2-band images. In this example,
the mean value of the metric component corresponding to the
Lena image is0.83, while the mean metric component on the
noise band is0.17. Not surprisingly, referring to table I we
see that0.83/0.17 ≈ 97.47/20.10, which indicates that the
capacity of the metric to distinguish structure from noise is
almost directly transferred to the fusion algorithm.

Euclidean Local Entropy

Contrast Form 20.10 97.47

Haar Wavelet 9.40 N/A

TABLE I

MEAN SQUARED SIGNAL-TO-NOISE RATIOS FOR RECONSTRUCTION OF

LENA IMAGE WITH DIFFERENT METHODS AND METRICS.

In order to test the sensitivity of the local entropy estima-
tion to different degrees of noise, we conducted the following
experiment. The standard Lena image (upper left on figure 7)
was corrupted with additive Gaussian noise of different stan-
dard deviations, on a grid pattern over the image and again on
the complement of that pattern. Thus we obtained a synthetic
2-band image, each band of which has added noise exactly
where the other does not, for each choice of standard devia-



(a) (b)

Fig. 4. Fusion of four bands in Figure 3. (a) Using a Euclidean metric. (b) Using an entropy-weighted diagonal metric withw = 9.

Fig. 5. Close-ups from the images in Figure 4 showing the effect of the entropy-weighted metric (bottom images are gamma-corrected to show structure in dark
areas).

tion. Figure 9(a) and 9(b) show an example of this for noise of
standard deviation45 grayvalues, with the added noise high-
lighted in red. For each such pair we computed the metric
constructed in section IV, and made a pixel-wise decision as
to which band was noisier, based on the magnitude of each
metric component. The proportion of correctly classified pix-
els as a function of the standard deviation of the added noise
is plotted in figure 8 (left). Note that even at a standard devi-
ation of 2.5 grayvalues the percentage of correctly classified
pixels is approximately89%. The majority of misclassified
pixels lie on the hair, where the correct image structure is al-
most impossible to detect locally without semantic clues, and
along the grid boundaries.

VI. CONCLUSION

We introduced a locally adaptive metric associated to a mul-
timodal image, which models the relative likelihood that fea-
tures from a given band are due to underlying image features,
versus noise. The underlying assumption is that neighbor-
hoods with simpler geometric structure are more likely to arise
from true features, while geometrically disorganized ones are
likely to be due to noise. This metric can then be instantiated
into the image fusion formalism previously proposed by the
author, to yield a contrast fusion model which is more robust
to the presence of image noise. We presented experimental
results that clearly show the effect of the adaptive metric on
real-life imagery, with synthetic noise. We can numerically
compute the effect of the new metric on the resulting fusion,



Fig. 7. From top left to bottom right: original image, result of Euclidean
fusion, result of fusion with local-entropy-based metric, result of Haar
wavelet fusion.
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Fig. 8. Left: Proportion of correctly classified pixels as a function of the
standard deviation of additive noise. Right: Ratio of metric components
a a function of standard deviation of additive noise

which is seen to be very positive.
Two topics for future research should be clear from the con-

struction above. Firstly, the metric we construct is pointwise
diagonal, which means that contrasts from different bands are
not allowed to interact with each other in a nonlinear fashion.
The reason for placing such a restriction on the metric was
simply that in the diagonal case the use of local gradient en-
tropies becomes intuitive. However, there is no reason to be-
lieve that the ideal metric, if such an object exists, should be
diagonal, and thus the construction of non-diagonal metrics
that extend the results above should be explored. Secondly,
as we noted in section IV, our entropy estimation relied on
neighborhoods of fixed size throughout the image plane. It

(a) (b) (c)

Fig. 9. (a) and (b): Two bands of an artificial image with added Gaussian
noise of standard deviation45 grayvalues highlighted in red. (c) Misclas-
sified pixels for image pair with noise of standard deviation5 grayvalues.

makes sense to think that if we knewa priori that a given
pixel is surrounded by a geometrically structured region, then
a smaller neighborhood would suffice for estimating the en-
tropy, while larger neighborhoods would be required for pix-
els in noisy regions. This would allow the metric to more
closely follow the local characteristics of the multiband im-
age. However, when we have noa priori knowledge of the
image noise, it is not clear how to vary the local neighborhood
size.

Lastly, we should note that by its very nature this method
is not well-adapted for processing imagery with structured or
periodic noise at the estimation scale. In that case, the en-
tropy based metric will detect the structure of the noise and
mistakenly increase the weight assigned to bands containing
such noise. In those situations, pre-processing each band sep-
arately with a filter in the frequency domain may yield better
results.
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